The Big Chill SEATTLE BUILDING ENCLOSURE COUNCIL

HYDROFLUOROCARBON LEGISLATION FOR WASHINGTON 4/16/2020

ABBEY BROWN - WASHINGTON STATE DEPT OF ECOLOGY
PAUL LEWANDOWSKI - OWENS-CORNING
DAN WHITMORE & ARI ANDERSON - RDH BUILDING SCIENCE

Panelist: Paul Lewandowski

- → Director of Regulatory Law at Owens Corning, 20 years
- Practicing environmental lawyer for 29 years
- → Environmental Science background
 - Georgetown University, J.D. 1992
 - > Univ. of Maryland, MA Public Health 1981
 - > Univ. of Michigan, BS Biology 1978

Panelist: Abbey Brown

- → Greenhouse Gas Reduction Specialist,
 - Climate Policy Section, WA Department of Ecology
- → Formerly worked for:
 - > Environmental Defense Fund
 - > NYC Mayor's Office of Sustainability,
 - > World Resources Institute
- → 10 years of environmental policy experience
 - > Bard College, B.A. Political Science 2011
 - The Middlebury Institute of International Studies, M.A. International Environmental Policy - 2019

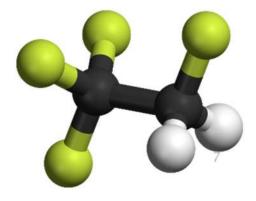
Seattle Building Enclosure Council

HB -1112/SB -5426:

- → Signed May 7th into Law
- → Regulates emissions from Hydrofluorocarbons
- → By Jan. 1, 2020 prohibits HFCs in specific applications, such as propellants, rigid polyurethane and spray foam applications, and supermarket refrigeration systems

Hydrofluorocarbons and Global Warming

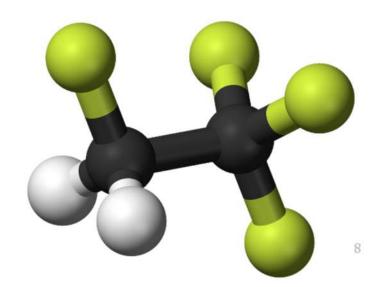
- → Replaced HCFCs which were phased out in response to the Montreal Protocol
- → 1000 times more global warming potential than CO2
- → Kigali Accord, officials from 170 countries met to amend the Montreal protocol to phase out HFCs
- → Scientists estimate that the phasing out of HFC could prevent nearly
 ½°C of warming
- → In WA, HFCs account for an estimated 4% of all GHG emissions


Hydrofluorocarbons and Global Warming

Project Drawdown ranks HFC Management as #1 impact for GHG reduction. 89.74 GT

Total Atmospheric	CO2-EQ	Reduction
-------------------	--------	-----------

#2 Wind Turbines	84.6 GT
#8 Solar Farms	36.9 GT
#10 Rooftop Solar	24.6 GT
#26 Electric Vehicles	10.8 GT
#31 Insulation	8.27 GT
#79 Net Zero Buildings	N/A


National and International Legislation

- → EU: In 2006 F-Gas Regulation adopted to reduce HFC's
- → SNAP (Significant New Alternatives Policy) Standards from 2015 Passed by California, New York, many other states, and WA
- → Canada is phasing out HFC's beginning Jan 1st 2021
- → Bi-Partisan legislation at the nation level is being proposed: <u>HR 5544</u> and <u>S. 2754</u> w/ 32 co-sponsors. (Dispute of HFC derailed Senate Bill S. 2657 earlier in March)

http://dynatempintl.com/an-update-on-the-state-by-state-hfc-phase-down/

https://www.politico.com/newsletters/morningenergy/2020/03/25/

Abbey Brown

Greenhouse Gas Reduction Specialist abbey.brown@ecy.wa.gov

April 16, 2020

The Department of Ecology adopted a rule in 2019 to transition away from using hydrofluorocarbons (HFCs) in products and equipment starting Jan. 1, 2020.

Why is this new law important?

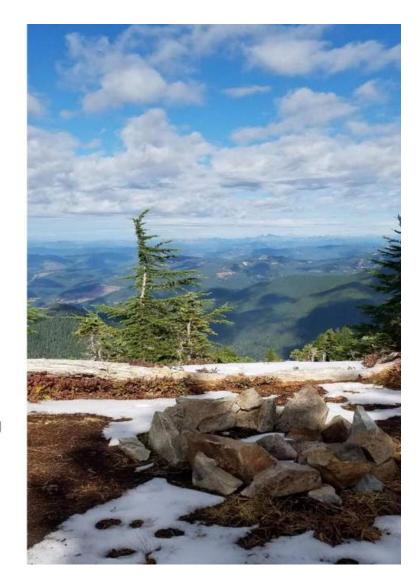
Hydrofluorocarbons, or HFCs, are greenhouse gases that are thousands of times more powerful than carbon dioxide. It makes sense to stop using them when there are alternatives available that are safer for the environment.

Who does the law apply to?

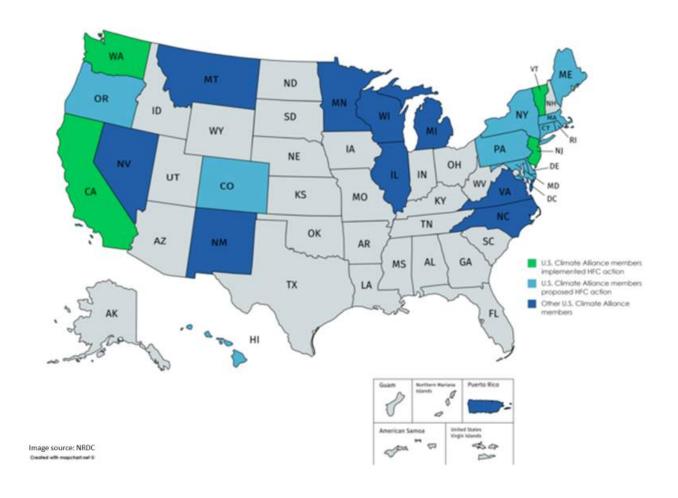
The law applies to manufacturers, importers, and distributors of products that contain restricted HFCs.

Deadlines for manufacturers

The restrictions go into effect at different times for each product category:


Jan. 1, 2020 — propellants, rigid polyurethane, spray insulating foam, and new supermarket refrigeration systems

Jan. 1, 2021 — new refrigerated food processing and dispensing equipment, and compact residential refrigerators


Jan. 1, 2022 — new residential refrigerators, and new and existing vending machines

Jan. 1, 2023 — new uses in cold-storage warehouses and built-in residential refrigerators

Jan. 1, 2024 — new uses in centrifugal and positive displacement industrial chillers

HFC Legislation & U.S. Climate Alliance States

How will this effect our buildings?

Regulation of Refrigerants

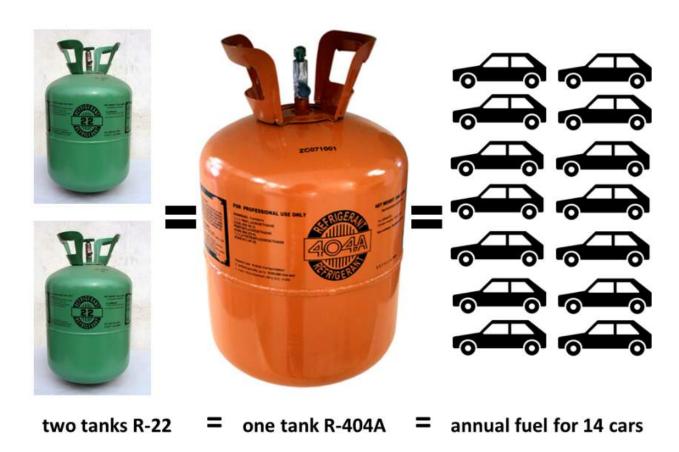


Image Source: California Air Resources Board

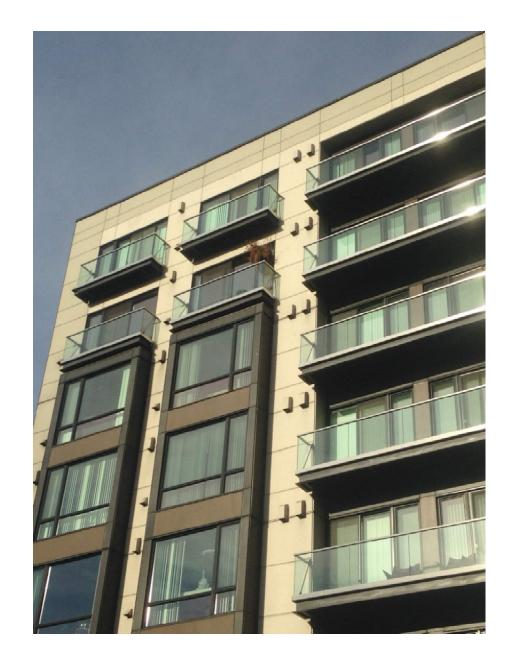
Refrigerants

- → Used in heating, cooling, refrigeration, etc. equipment for Mechanically moving energy
- → Main ones (R-22, R-410a and R-134a) being phased out due to high Global Warming Potential
- → New ones in use and development
- → Can be captured and recycled or incinerated, but only ~10% compliance

→ Global Warming Potential

 \rightarrow GWP

 \rightarrow CO² = 1 GWP (baseline)

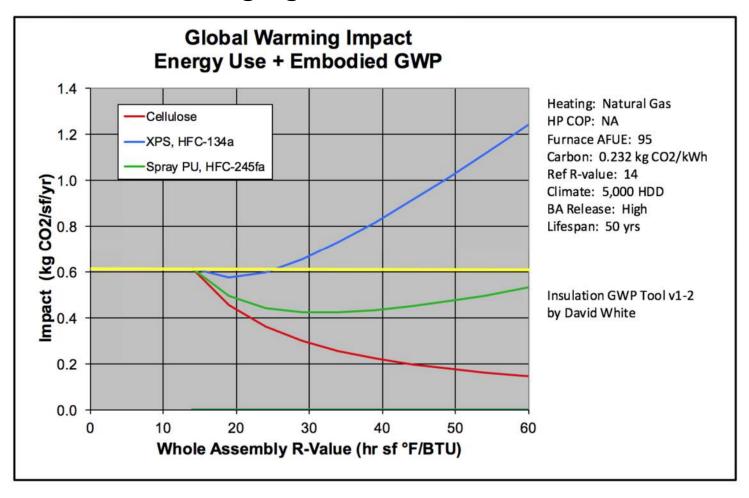

Refrigerant	GWP	
CO ²	1	
Methane (Natural Gas)	28- 36	
R-22	1810	
R-410a	1610	
R-134a	1430	
R-744	1	

https://www.epa.gov/ghgemissions/understanding-global-warming-potentials

Refrigerants

- → SeaBEC contribution
 - → Make the enclosure work better: reduce heating and cooling needs
 - → Fewer refrigerants required

Regulation of Blowing Agents


- → Primarily in 'foam' products
 - → Rigid board stock
 - > Polystyrene
 - Extruded: XPS (current)
 - Expanded: EPS
 - > Polyisocyanurate: Poly-Iso
 - → Applied in place
 - > Polyurethane
 - Spray
 - Pour

Chemical	GWP
CFC-12	10,900
CFC-11	4,750
HFC-227ea	3,220
HCFC-142b	2,310
HCFC-22	1,810
HFC-134a	1,430
HFC-245fa	1,030
HFC-365mfc	794
LICEC 1445	
HCFC-141b	725
HCFC-1416 HFC-152a	124
HFC-152a	124
HFC-152a Cyclopentane	124
HFC-152a Cyclopentane n-Pentane	124 <25 <25
HFC-152a Cyclopentane n-Pentane Methyl Formate	124 <25 <25 <25
HFC-152a Cyclopentane n-Pentane Methyl Formate Methylal	124 <25 <25 <25 <25
HFC-152a Cyclopentane n-Pentane Methyl Formate Methylal Other HFOs	124 <25 <25 <25 <25 <25
HFC-152a Cyclopentane n-Pentane Methyl Formate Methylal Other HFOs HFO-1234ze	124 <25 <25 <25 <25 <25 <6

Insulation and Blowing Agents

→ More is not always better

XPS: Extruded Polystyrene

High performance choice for

- → Exposure to bulk water
 - → Esp. hydrostatic pressure
- → Manufacturers
 - → Dow/Dupont
 - → Owens-Corning
 - → Kingspan
- → Is There a substitute to HFC-based products?

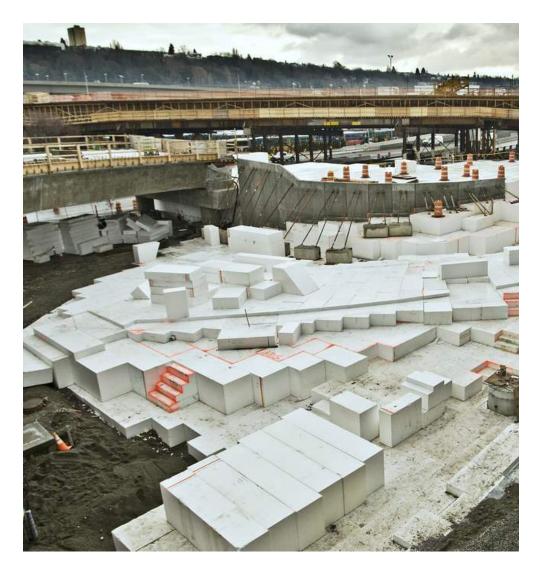


Image Source: RDH

EPS: Expanded Polystyrene

Choice for

- → Low <u>GWP</u>
- → Exposure to bulk water
- → Geofoam/structural
- → Concerns with exposure to elevated hydrostatic pressures

Polyurethane Spray Foam

High performance choice for

- → Moisture control
 - → At certain densities
- → Air control
- → Complicated installations
- \rightarrow R per inch (R-5.5 to 7)
- → Concerns?
 - → Many
 - → This is a manufacturing process

Polyurethane Spray Foam

AKA "Two Part Foam"

- → Many manufacturers for whole end product
- → Limited manufacturers for blowing agents
 - → Few options for compliant blowing agents
 - > Honeywell Solstice
 - > Chemours Opteon 1100
- → "Generation 4" products are on the market
 - → This is a manufacturing process

CANADIAN HFO Medium Density Closed Cell Foam							
Properties	Test Method						
Trade Name		Insulthane EXTREME	Walltite CM01	NexSeal 2.0	Sopra Spf 202	Heatlok Soya HFO	ProSeal HFO T2
Foam Color		Burnt Sienna	Purple	Army Green	Grey	Blue	Platinum
CCMC#		13697-L	14100-L	14087-L	14141-L	14078-L	14139-L
Manufacturer		Elastochem	BASF	SES	Soprema	Demilec	Icynene
Foam Type	LTTR	TYPE 2	TYPE 1	TYPE 1	TYPE 2	TYPE 1	
LTTR RSI (50mm)	CAN/ULC S 770	2.10	1.82	1.87	2.10	1.88	
LTTR R-Value/inch	CAN/ULC S 770	6.1	5.3	5.4	6.1	5.4	
		26 psi	34.2 psi	32.0 psi	26 psi	24.8 psi	
Compressive Strength	ASTM- D-1621	180 kPa	236kpa	223kpa	180 kPa	180 kPa	
		1.98 lb/ft ³	1.85 lb/ft ³	2.17 lb/ft ³	1.98 lb/ft ³	2.10 lb/ft ³	e e
Core Density	ASTM-D1622	30kg/m³	29.6kg/m ³	35kg/m³	30kg/m³	33.7kg/m³	Q
Open Cell %	ASTM-D-6226	<3%	5.60%	4.17%	<3%	0%	<u>a</u>
Tensile	ASTM-D-1623	279 kPa	313 kPa	221 kPa	279 kPa	401 kPa	a;
Water vapour permeance	ASTM-E-96 Core sample @ 50mm	23 ng/Pa.s.m²	56.3 ng/Pa.s.m²	38 ng/Pa.s.m³	23 ng/Pa.s.m²	51 ng/Pa.s.m²	No Data Sheet Available
Dimensional stability	ASTM-D-2126 @ 70C & 97% RH	-9.6%	7.0%	9.2%	-9.6%	9.4%	Sh
Flame Spread	CAN/ULC S-127	255 FS	<500 FS	246 FS	255 FS	245 FS	Ē
Smoke	CAN/ULC S-103	130 SD	<500 SD	<500 SD	130 SD	<500 SD	a.
Fungi Resistance	ASTM-C-1338	PASS	PASS	PASS	PASS	PASS	
Water Absorption	ASTM-D-2842	0.50%	0.58%	0.50%	0.50%	0.64%	9
Certification organization	QAP Provider	UFC	CALIBER	UFC	B.P.	CALIBER	_
Time to occupancy	Hours	24	24	24	24	24	
GreenGuard	Indoor Air Qual.	Gold	Gold	-	Gold	Gold	
Pocycled content	Side A+B	24%	>5%	??	24%	1070	
Global Warming Potential		1	1	1	1	1	
Best Performing Worst Performing		Good through 2021					

Blowing Agents

- → SeaBEC contribution
 - → Make the enclosure work better: appropriate use, placement and amount of insulation
 - → Correct installation of these precious materials
 - → Supporting materials with lower GWP

Image Source: RDH

Further Resources

- → SNAP (Significant New Alternatives Policy) : https://www.epa.gov/snap
- → HFC Prohibitions in California (likely to be very similar in WA) https://ww2.arb.ca.gov/resources/fact-sheets/hydrofluorocarbon-hfc-prohibitions-california
- → Alex Wilson webinar on insulation products (from 2011 but mostly still relevant)
 https://www.youtube.com/watch?v=vIrBIDO5boE
- → Canadian regulation http://www.gazette.gc.ca/rp-pr/p2/2017/2017-10-18/html/sor-dors216-eng.html
- → David White's Insulation Global Warming Potential Calculator https://www.rightenvironments.com/downloads

Further Resources: Spray Foam

- → Low GWP Blowing Agents
 - → https://www.opteon.com/en/products/foam-blowing/1100
 - → https://www.fluorineproducts-
 honeywell.com/blowingagents/product/solstice-liquid-blowing-agent/
- → Quality Control:

https://www.buildingscience.com/sites/default/files/staying_out_of_trouble_with_spf_with_bonus_material_henri_fennell_terry_brennan.pdf

Discussion + Questions

BUILDING SCIENCE LABORATORIES